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Abstract
Resolution Enhancement Techniques (RETs) are critical to meet

the demands of advanced technology nodes. Among RETs, Source
Mask Optimization (SMO) is pivotal, concurrently optimizing both
the source and the mask to expand the process window. Traditional
SMO methods, however, are limited by sequential and alternating
optimizations, leading to extended runtimes without performance
guarantees. This paper introduces a unified SMO framework utilizing
the accelerated Abbe forward imaging to enhance precision and
efficiency. Further, we propose the innovative BiSMO framework,
which reformulates SMO through a bilevel optimization approach,
and present three gradient-based methods to tackle the challenges
of bilevel SMO. Our experimental results demonstrate that BiSMO
achieves a remarkable 40% reduction in error metrics and 8× increase
in runtime efficiency, signifying a major leap forward in SMO.

1 Introduction
Lithography, vital for semiconductor manufacturing, advances

integrated circuit (IC) development. The semiconductor industry’s
drive for miniaturization and efficiency challenges traditional lithog-
raphy in creating finer patterns, emphasizing the need for resolution
enhancement techniques (RETs) to meet advanced semiconductor
requirements. Among various RETs such as sub-resolution assist
features (SRAFs) [1], optical proximity correction (OPC) [2], and
source mask optimization (SMO), SMO stands out due to its broader
solution space. SMO uniquely optimizes both illumination source
and mask pattern, ensuring pivotal lithographic fidelity vital for
advancing next-generation IC manufacturing.

As shown in Figure 1(a), SMO integrates source optimization (SO),
mask optimization (MO), and their iterative optimization refinement.
The efficiency and performance of SMO are primarily influenced by
two factors: the imagingmodel and the optimization strategy. Central
to both SO and MO are the forward imaging models: Abbe’s [3] and
Hopkins’ [4], each with unique computational characteristics. Abbe’s
model, celebrated for its precision, demands extensive computation
through the summation of intensities from discrete source points.
Conversely, Hopkins’ model, employing truncated singular value
decomposition (SVD), reduces computational load but is unsuitable
for SO due to its loss of source information. Beyond isolated SO
and MO, the strategy employed in their combined optimization
significantly influences the optimization trajectory and solution
space, thereby affecting SMO outcomes.

Within MO, Hopkins’ model is foundational to various meth-
ods. This includes MOSAIC [2] which blends design target and pro-
cess window considerations, and techniques such as GAN-OPC [5],
DAMO [6], Neural-ILT [7], and DevelSet [8] that employ deep neural
networks for enhanced performance. Hardware acceleration strate-
gies like those in GPU-LS [9] and Multi-ILT [10] leverage GPU and
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Figure 1: (a) The forward lithography and SMO process. (b)
Bilevel SMO with upper-level MO and lower-level SO.

parallel acceleration to expedite Hopkins-based MO tasks. To the
best of our knowledge, the potential of Abbe-based MO optimization
and acceleration remains unexplored.

For SO, the impracticality of Hopkins’ model necessitates ex-
clusive reliance on Abbe’s. Previous SO strategies have employed
compressive sensing [11] and sampling-based methods [12] for com-
plexity reduction. However, the benefit is limited. By contrast, MO
using the Hopkins model with GPU or DNN acceleration achieve
average optimization times of five seconds, while SO dependent on
Abbe’s model typically exceed 30 minutes. Due to its computational
intensity, accelerating Abbe’s model is essential.

In SMO, alongside the imaging model, the co-optimization strat-
egy is a critical determinant of performance. Since the inception of
SMO in early 2010s, the alternating minimization (AM) strategy has
been a dominant approach in SMO [11–13]. As shown in Figure 2(a),
AMmethod involves isolated iterative minimization of source param-
eters across multiple SO epochs while maintaining constant mask
variables, followed by mask optimization in MO epochs with the
source fixed, repeating until convergence. However, AM strategy’s
simplicity does not guarantee effectiveness. Due to the concurrent
impact of source and mask parameters on the aerial image, AM’s
localized focus can result in SMO being confined to local minima,
and the absence of global, gradient-based guidance can prolong con-
vergence, necessitating more iterations. These limitations highlight
the need for more advanced co-optimization strategies in SMO.

To address SMO challenges, we utilize the Abbe model for for-
ward imaging, leveraging its capability for concurrent SO and MO
gradient computation, and its superior precision due to avoidance of
approximate decomposition.We counterbalance the Abbemodel’s in-
tensive computational demand with GPU acceleration. This enables
us to develop an Abbe-based unified SMO framework incorporat-
ing process window considerations, consequently enhancing SMO
outcomes, improving efficiency, and reducing process variability.
Furthermore, we innovatively reconceptualize the SMO problem as a
bilevel optimization (BLO) challenge to gain a better co-optimization
strategy, as depicted in Figure 1(b). BLO, a hierarchical mathematical



program, is defined as an optimization problem where the feasible
region is constrained by another nested optimization problem. It is
widely applied in areas such as hyperparameter optimization [14],
neural architecture search [15], and multitask or meta-learning [16].
We then propose three novel gradient-based bilevel SMO solutions,
featuring global perspectives achieved through MO and SO gradient
fusion. These solutions demonstrate substantial improvements in
efficiency and accuracy over the traditional SMO approaches. Our
primary contributions are as follows:
• We establish the first unified Abbe-based SMO framework in-

corporating process window considerations, significantly accel-
erating Abbe imaging through parallel computation, achieving
speeds comparable to Hopkins’ method.

• We pioneer the modeling of SMO as a unified bilevel frame-
work, developing three efficient gradient-based methods with
global perspectives and improved exploration of solution space,
superseding the conventional SMO.

• Our experimental results indicate that, compared to state-of-
the-art (SOTA) SMO methods [12], our approach reduces error
metrics by approximately 40% and achieves an eightfold increase
in throughput. In comparison to SOTA MO methods [10], our
error metrics are half as large.

2 Preliminaries
2.1 Lithography Simulation

In optical lithography systems, the intensity of aerial image 𝐼 (𝑥,𝑦)
on the wafer plane can be formulated via lithography theory [4] as:

𝐼 (𝑥,𝑦) =
∫∫∫∫∫∫ ∞

−∞
𝐽 (𝑓 , 𝑔)𝑂 (𝑓 ′, 𝑔′)𝑂∗ (𝑓 ′′, 𝑔′′)𝐻 (𝑓 + 𝑓 ′, 𝑔+𝑔′)

𝐻∗ (𝑓 + 𝑓 ′′,𝑔 + 𝑔′′) exp(−𝑖2𝜋 ((𝑓 ′− 𝑓 ′′)𝑥 + (𝑔′−𝑔′′)𝑦))
d𝑓 d𝑔 d𝑓 ′ d𝑔′ d𝑓 ′′ d𝑔′′,

(1)

where 𝑱 is the illumination source. 𝑯 is projection system’s opti-
cal transfer function. 𝑂 (𝑓 ′, 𝑔′) captures the binary mask pattern
𝑀 (𝑥,𝑦)’s frequency spectrum, derived via a 2𝐷 fast Fourier trans-
form (FFT), F(·). ∗ signifies the Hermitian transpose. (𝑥,𝑦) denotes
spatial coordinates, while (𝑓 , 𝑔), (𝑓 ′, 𝑔′), and (𝑓 ′′, 𝑔′′) refer to the
frequency coordinates of the source, mask spectrum, and its conju-
gate, respectively. The formation of aerial image in Equation (1) is
computed using two distinct methods: Abbe’s and Hopkins’ method.

Abbe’sApproach:Abbe’s approach, also known as the source points
integration approach, discretizes the source space and independently
computes the contribution of each source point, subsequently sum-
ming these contributions to form the aerial image. Regardless of the
discretization technique, the source can hence be represented as a
set of source points {(𝑓𝜎 , 𝑔𝜎 ; 𝑗𝜎 )}, where each source point defines
a pair of spatial frequencies and its discrete magnitude 𝑗𝜎 ∈ [0, 1].
By setting 𝑨(𝑓 ,𝑔) (𝑓 ′, 𝑔′) = 𝐻 (𝑓 + 𝑓 ′, 𝑔 + 𝑔′)𝑂 (𝑓 ′, 𝑔′), and applying
the Inverse Fast Fourier Transform (IFFT), the total intensity in
Equation (1) can be formulated in Abbe’s approach:

𝐼 (𝑥,𝑦) =
∑︁
𝜎

𝑗𝜎 |𝑨(𝑓𝜎 ,𝑔𝜎 ) (𝑥,𝑦) |
2 . (2)

Hopkins’ Approach: Hopkins’ approach separates the calculation
of source and projection system from the processing of the mask

for Equation (1). It formulates the source and projector into the
transmission cross-coefficients (𝑇𝐶𝐶), as defined by:

𝑇𝐶𝐶 =

∬ ∞

−∞
𝐽 (𝑓 , 𝑔)𝐻 (𝑓 + 𝑓 ′, 𝑔+𝑔′)𝐻∗ (𝑓 + 𝑓 ′′,𝑔+𝑔′′)d𝑓 d𝑔. (3)

The Sum of Coherent Systems (SOCS) [4] provides an approximation
to the Hopkins imaging equations, simplifying the 𝑇𝐶𝐶 spectrum
using SVD. Due to the rapid decay of eigenvalue 𝜅𝑞 with 𝑞, only the
top truncated 𝑄 eigenvalues are retained. By applying the IFFT,
SOCS can be expressed in spatial domain as:

𝐼 (𝑥,𝑦) =
𝑄∑︁
𝑞=1

𝜅𝑞 |𝜙𝑞 (𝑥,𝑦) ⊗ 𝑀 (𝑥,𝑦) |2, (4)

where 𝜙𝑞 (𝑥,𝑦) is the spatial distribution of eigenvector 𝚽𝒒 . Here, ⊗
denotes convolution and | · | is the absolute operator.
Hopkins’ Approach vs. Abbe’s Approach: In Equation (4), Hop-
kins’ method reduces computational demands from Abbe’s O(𝑁 2

𝑗
·

𝑁 4
𝑚) to O(𝑄 · 𝑁 4

𝑚), with 𝑄 < 𝑁 2
𝑗
for source 𝑱 ∈ R𝑁 𝑗×𝑁 𝑗 and mask

𝑴 ∈ R𝑁𝑚×𝑁𝑚 . Under identical optical conditions, Hopkins’ method
outperforms Abbe’s in speed, leading to its preference in various
MO algorithms [2, 5–10]. However, Hopkins’ reliance on truncated
SVD, as shown in Equation (4), prevents SO due to the inability to
calculate source gradients. In contrast, Abbe’s method (Equation (2))
inherently suits SO by summing the impacts of all source points to
form the aerial image. Moreover, Abbe’s richer source information
enhances lithography precision, thus improving MO outcomes. Con-
sequently, Abbe’s method is essential for SO, higher MO precision,
and indispensable for gradient-based bilevel SMO.

2.2 Evaluation Metrics
Definition 1 (Squared 𝐿2 Error (L2)). Given target pattern 𝒁𝑡 and
resist image under nominal process condition 𝒁 , the squared 𝐿2 error
is calculated as ∥𝒁 − 𝒁𝑡 ∥22.

Definition 2 (Process Variation Band (PVB)). PVB [17] is used in
manufacturing to represent the expected range of variation in a
production process. PVB denotes the XOR area between the resist
images 𝒁min and 𝒁max under the min and max process conditions.

Definition 3 (Edge Placement Error (EPE)). EPE [17] refers to the
deviation between the intended position of a feature on a wafer and
its actual position after lithography.

3 Algorithm
3.1 Abbe-based Unified SMO Framework

The Hopkins model, hindered by the need for frequent, inefficient,
and non-differentiable SVD truncation of the TCC, limits effective
gradient-based co-optimization of source and mask. Addressing this,
we introduce a unified SMO framework employing the Abbe model,
which facilitates efficient, joint SMO without the TCC’s burdensome
processing. The framework is further enhanced by incorporating
parallel computing techniques for acceleration.

Abbe-based unified SMO: Utilizing freeform illumination, the pix-
elated source point is denoted as 𝐽 (𝑓 , 𝑔) ∈ [0, 1], while binary mask
values𝑀 (𝑥,𝑦) are either 0 or 1. To render the SMO framework dif-
ferentiable, we introduce optimization parameters 𝜽 𝐽 for Source 𝑱

and 𝜽𝑀 for Mask𝑴 , where 𝜽 𝐽 ∈ R𝑁 𝑗×𝑁 𝑗 , 𝜽𝑀 ∈ R𝑁𝑚×𝑁𝑚 , and both



parameters can assume any real value. Here, 𝑁 𝑗 and 𝑁𝑚 represent
the dimensions of the source and mask. Appropriate activation and
initialization enable deriving source and mask from these parame-
ters. The Sigmoid function 𝜎 (𝑥) = 1/(1 + exp(−𝑥)) is employed
for both grayscale source and binary mask, as listed in Table 1.
Table 1: The activation and initialization for Abbe-imaging.

Activation Initialization
Mask 𝑴 𝑴 = 𝜎 (𝛼𝑚 · 𝜽𝑀 ) 𝜽𝑀 (𝑥,𝑦) =𝑚0, if𝑀0 (𝑥,𝑦) = 1; else −𝑚0 .

Source 𝑱 𝑱 = 𝜎 (𝛼 𝑗 · 𝜽 𝐽 ) 𝜽 𝐽 (𝑓 , 𝑔) = 𝑗0, if 𝐽0 (𝑓 , 𝑔) = 1; else − 𝑗0 .

In Table 1, 𝛼𝑚 and 𝛼 𝑗 are the sigmoid steepness. Initial values for
𝜽𝑀 are assigned as either𝑚0 or −𝑚0 based on initial mask pattern
𝑴0. Typically, the initial mask pattern is the same as the binary
target pattern 𝒁𝑡 . This mask initialization also facilitates SRAF gen-
eration during MO. Grayscale source 𝑱 requires careful selection
of steepness 𝛼 𝑗 and initialization 𝑗0 to maintain its grayscale prop-
erty. Hyperparameters are detailed in Section 4. The shape of initial
source pattern 𝑱 0 is derived from parametric templates like annular,
quasar, or dipole, characterized by outer and inner radii 𝜎𝑜 and 𝜎𝑖 .
Although the Cosine function is an alternative source activation,
its use may lead to training instability due to gradient issues, leading
us to prefer the Sigmoid function. The transfer function 𝐻 (𝑓 , 𝑔)
can be accurately characterized by a low-pass filter, expressed as:

𝐻 (𝑓 , 𝑔) =
{
1, if

√︁
𝑓 2 + 𝑔2 ≤ 𝑁𝐴

𝜆
,

0, otherwise,
(5)

where the cut-off frequency is determined by the projection system’s
numerical aperture 𝑁𝐴 and the illumination wavelength 𝜆. By in-
tegrating Equation (2), Equation (5) and Table 1, we formulate the
Abbe forward imaging 𝑓𝑎𝑏𝑏𝑒 , determining the aerial image 𝑰 as a
function of the optimization parameters for source 𝜽 𝐽 and mask 𝜽𝑀 :
𝑰 = 𝑓𝑎𝑏𝑏𝑒 (𝜽 𝐽 , 𝜽𝑀 ) . Then we can utilize a straightforward threshold
model for resist modeling. The Sigmoid activation is also adopted
to ensure a smooth transition and maintain differentiability:

𝒁 = 𝜎 (𝛽 · (𝑰 − 𝐼𝑡𝑟 )), (6)

where𝒁 represents the resist pattern, 𝐼𝑡𝑟 denotes the intensity thresh-
old, and 𝛽 is the steepness.

We have now established a complete Abbe forward imagingmodel
that maps the parameters 𝜽 𝐽 and 𝜽𝑀 to the aerial image 𝑰 and the
resist image 𝒁 . To realize SMO, it is essential to define the corre-
sponding objective function and optimization method. We employ
the mean squared loss to quantify the discrepancy between the resist
pattern 𝒁 and the target pattern 𝒁𝑡 :

L2 = ∥𝒁 − 𝒁𝑡 ∥2 . (7)

In alignment with [2] and considering a ±2% dose range, we pioneer
the integration of process window considerations into Abbe-based
SMO to mitigate process variation via PVB loss. By substituting
𝑴min=𝑑min · 𝜎 (𝛼𝑚 · 𝜽𝑀 ) and 𝑴max=𝑑max · 𝜎 (𝛼𝑚 · 𝜽𝑀 ) into 𝑓𝑎𝑏𝑏𝑒 ,
we obtain the resist patterns 𝒁min, 𝒁max under minimum 𝑑min and
maximum 𝑑max process conditions. The PVB loss is formulated as:

L𝑝𝑣𝑏 = ∥𝒁max − 𝒁𝑡 ∥2 + ∥𝒁min − 𝒁𝑡 ∥2 . (8)

Consequently, the comprehensive SMO loss L𝑠𝑚𝑜 is formulated as:

L𝑠𝑚𝑜 B L𝑠𝑜 B L𝑚𝑜 = 𝛾L2 + 𝜂L𝑝𝑣𝑏 , (9)

where 𝛾 and 𝜂 are weighting factors for the respective loss com-
ponents. SO loss L𝑠𝑜 and MO loss L𝑚𝑜 can utilize same objective
functions. The SMO problem is thus defined as:

(𝜽 𝐽 , ˆ𝜽𝑀 ) = argmin
(𝜽 𝐽 ,𝜽𝑀 )

L𝑠𝑚𝑜 (𝜽 𝐽 , 𝜽𝑀 ), (10)

where 𝜽 𝐽 , ˆ𝜽𝑀 represent the optimal parameter values for the source
and mask, respectively.

Abbe acceleration. The primary computational bottleneck in SMO
is the forward imaging model and its gradient calculations. As noted
in Equations (2) and (4), contributions from source points can be in-
dependently calculated, making the complexity ratio between Abbe’s
and Hopkins’s models 𝜎/𝑄 , where 𝜎 ∈ [0, 𝑁 2

𝑗
] represents the num-

ber of effective source points (i.e., where 𝑗𝜎 > 0). Both models can
be accelerated with parallel computing, using multicore CPUs or
GPUs. Theoretically, the parallel computation time ratio is ⌈𝜎

𝑃
⌉/⌈𝑄

𝑃
⌉,

where 𝑃 denotes the maximum number of parallel threads and ⌈·⌉ is
the ceiling operator. This suggests that Abbe’s runtime can match
Hopkins’ if 𝑃 ≥ 𝜎 . In our implementation, GPUs are utilized for
parallel computation of each effective source point’s contribution
to the aerial image, owing to their greater thread parallelism, larger
memory bandwidth, and faster FFT or IFFT operations compared
to multicore CPUs. Experimental results in Section 4.1 demonstrate
that our Abbe-imaging model achieves runtime performance com-
parable to Hopkins’ model.

3.2 Efficient Bilevel SMO
Previous alternating minimization-based SMO: Since the intro-
duction of SMO technology, the significant computational demands
have compelled previous methods to compromise on a simple alter-
nating minimization (AM) strategy. As illustrated in Algorithm 1,
AM-based SMO (AM-SMO) alternates between two minimization
cycles, updating parameters 𝜽 𝐽 and 𝜽𝑀 sequentially. This process
iterates until reaching the specified convergence criteria for SO and
MO, as shown in Figure 2(a). However, AM-SMO has several notable
drawbacks: 1) AM-SMO tends to converge to local minima due to its
narrow focus on localized aspects of SO or MO, ignoring the global
structure of the problem. 2) The convergence is often slow because
the source and mask are highly interdependent. Adjusting (𝜽𝑀 )𝑘 as
per line 5 makes (𝜽 𝐽 )𝑘 suboptimal, requiring numerous iterations for
stabilization. 3) The absence of global gradient guidance complicates
establishing effective early stopping criteria, often resulting in either
prolonged optimization or suboptimal convergence.
Algorithm 1 Alternating Minimization-based SMO (AM-SMO) [11, 12]

1: for 𝑘 = 1, 2, 3, . . .; do ▷ Alternating SO & MO.
2: while not converged do ▷ SO iterations.
3: (𝜽 𝐽 )𝑘 ← argmin𝜽 𝐽 L𝑠𝑜

(
𝜽 𝐽 , (𝜽𝑀 )𝑘−1

)
; ▷ 𝜽𝑀 is fixed.

4: while not converged do ▷ MO iterations.
5: (𝜽𝑀 )𝑘 ← argmin𝜽𝑀 L𝑚𝑜

(
(𝜽 𝐽 )𝑘 , 𝜽𝑀

)
; ▷ 𝜽 𝐽 is fixed.

return (𝜽 𝐽 )𝑘 , (𝜽𝑀 )𝑘 .

Proposed bilevel SMO: Equation (10) frames SMO as a typical
multivariate optimization problem. Yet, the AM-SMO, as detailed in
Algorithm 1, often leads to suboptimal results due to its localized fo-
cus. A gradient-based approach with a global perspective is essential
to overcome these limitations. In SMO, SO and MO have a nested
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Gradient fusion

Figure 2: (a)Previous AM-SMO flow. (b)Our BiSMO flow.

relationship. The goal is to rapidly and effectively determine the
optimal source response for each altered mask, offering MO global
gradient direction to boost overall SMO efficiency. This scenario is
particularly well-suited for a bilevel optimization approach. From a
bilevel viewpoint, the upper-level MO, constrained by the optimal
solutions from the lower-level SO, forms a dependent hierarchy, as
illustrated in Figure 1(b) and Figure 2(b). This structure allows the
MO to offer a global perspective by solving SO, guiding the opti-
mization beyond local minima. Consequently, Equation (10) can be
reformulated in a bilevel context:
min
𝜽𝑀

L𝑚𝑜 (𝜽 ∗𝐽 (𝜽𝑀 ), 𝜽𝑀 ), ▷ Upper-Level: MO

s.t. 𝜽 ∗𝐽 (𝜽𝑀 ) = argmin𝜽 𝐽 L𝑠𝑜 (𝜽 𝐽 , 𝜽𝑀 ). ▷ Lower-Level: SO
(11)

In BLO, the inner and outer loops are termed lower-level and upper-
level subproblems. Here the inner loop seeks optimal source pa-
rameters 𝜽 ∗

𝐽
for the current 𝜽𝑀 while the outer loop endeavors to

optimize the mask parameters 𝜽𝑀 with the best-response source
𝜽 ∗
𝐽
(𝜽𝑀 ). The gradient of the outer loop in bilevel SMO, also referred

to as the hypergradient, which is derived from the fusion of gradients
from the upper and lower levels, is then calculated as:

∇𝜽𝑀L𝑚𝑜 =
𝜕L𝑚𝑜

𝜕𝜽𝑀
+ 𝜕L𝑚𝑜

𝜕𝜽 𝐽

𝜕𝜽 ∗
𝐽
(𝜽𝑀 )
𝜕𝜽𝑀

. (12)

Within the Abbe-based SMO framework introduced in Section 3.1,
the direct gradient 𝜕L𝑚𝑜

𝜕𝜽𝑀
and 𝜕L𝑚𝑜

𝜕𝜽 𝐽
can be efficiently computed.

However, two principal challenges arise: (1) the precise approxi-
mation of the SO optimal solution 𝜽 ∗

𝐽
(𝜽𝑀 ), and (2) differentiating

the best-response Jacobian:
𝜕𝜽 ∗𝐽 (𝜽𝑀 )
𝜕𝜽𝑀

. To address the former, we ap-
proximate 𝜽 ∗

𝐽
by unrolling a few SO gradient steps 𝑇 , significantly

reducing the computational cost. Fortunately, extensive research [14–
16] indicates that BLO, with weight sharing, can effectively adapt
𝜽 𝐽 to 𝜽 ∗𝐽 with a small unrolling step 𝑇 . For the latter issue, we pro-
pose three methods to compute the best-response Jacobian: bilevel
SMO using finite difference (BiSMO-FD), BiSMO-NMN utilizing
Neumann series, and BiSMO-CG using conjugate gradients.

3.2.1 BiSMO-FD: The finite difference (FD) strategy uses a single

inner SO step, 𝜽 ∗
𝐽
(𝜽𝑀 ) = 𝜽 𝐽 − 𝜉∇𝜽 𝐽 L𝑠𝑜 , and obtaining

𝜕𝜽 ∗𝐽 (𝜽𝑀 )
𝜕𝜽𝑀

=

−𝜉 𝜕2L𝑠𝑜
𝜕𝜽𝑀 𝜕𝜽 𝐽

, the BiSMO-FD calculates the hypergradient as:

∇𝜽𝑀LFD𝑚𝑜 =
𝜕L𝑚𝑜

𝜕𝜽𝑀
− 𝜉 𝜕L𝑚𝑜

𝜕𝜽 𝐽

𝜕2L𝑠𝑜
𝜕𝜽𝑀 𝜕𝜽 𝐽

, (13)

where 𝜉 is the inner-loop learning rate for 𝜽 𝐽 . While increasing the
number of inner SO steps can lead to a more precise approximation
for 𝜽 ∗

𝐽
, akin to AM-SMO, it results in a linear increase in memory and

computational load, becoming impractical due to the need to store
optimization paths and all intermediate gradients for differentiation
following the chain rule.

In contrast, using the implicit function theorem (IFT), the hyper-
gradient can be computed without retaining intermediate gradients,
thus independent of the optimization path and significantly reduc-
ing memory usage. The IFT-based hypergradient for SMO can be
formulated as the following lemma.

Lemma 1. Implicit Function Theorem: Consider 𝜽 ∗
𝐽
(𝜽𝑀 ) defined in

Equation (11), with first-order optimality condition
𝜕L𝑠𝑜 (𝜽 ∗𝐽 ,𝜽𝑀 )

𝜕𝜽 𝐽
= 0,

𝜕

𝜕𝜽𝑀

[
𝜕L𝑠𝑜 (𝜽 ∗𝐽 (𝜽𝑀 ), 𝜽𝑀 )

𝜕𝜽 𝐽

]
=0, ⇒ 𝜕2L𝑠𝑜

𝜕𝜽𝑀 𝜕𝜽 𝐽
+ 𝜕2L𝑠𝑜
𝜕𝜽 𝐽 𝜕𝜽 𝐽

𝜕(𝜽 ∗
𝐽
(𝜽𝑀 ))

𝜕𝜽𝑀
= 0,

⇒ best-response Jacobian:
𝜕(𝜽 ∗

𝐽
(𝜽𝑀 ))

𝜕𝜽𝑀
= −

[
𝜕2L𝑠𝑜
𝜕𝜽 𝐽 𝜕𝜽 𝐽

]−1
𝜕2L𝑠𝑜
𝜕𝜽𝑀 𝜕𝜽 𝐽

.

With Equation (12), we have hypergradient formulated by:

∇𝜽𝑀L𝑚𝑜 =
𝜕L𝑚𝑜

𝜕𝜽𝑀
− 𝜕L𝑚𝑜

𝜕𝜽 𝐽

[
𝜕2L𝑠𝑜
𝜕𝜽 𝐽 𝜕𝜽 𝐽

]−1
𝜕2L𝑠𝑜
𝜕𝜽𝑀 𝜕𝜽 𝐽

. (14)

However, the inverse Hessian
[
𝜕2L𝑠𝑜
𝜕𝜽 𝐽 𝜕𝜽 𝐽

]−1
in Equation (14) is hard

to calculate. In Equation (13), BiSMO-FD employs finite difference

to naively approximate the inverse
[
𝜕2L𝑠𝑜
𝜕𝜽 𝐽 𝜕𝜽 𝐽

]−1
= 𝜉I, where I

denotes the identity matrix. For a more precise approximation of
the inverse, we introduce two IFT-based methods: Neumann series
(BiSMO-NMN) and conjugate gradient (BiSMO-CG), to reformulate
the hypergradient.

3.2.2 BiSMO-NMN

Lemma 2. Neumann series [14]: With a matrix 𝑨 that ∥I −𝑨∥ < 1,
we have 𝑨−1 =

∑∞
𝑘=0 (I −𝑨)

𝑘 .

Based on Lemma 2, with small enough learning rate, the hypergra-
dient in Equation (14) for BiSMO-NMN is formulated by:

∇𝜽𝑀L𝑚𝑜 =
𝜕L𝑚𝑜

𝜕𝜽𝑀
− 𝜕L𝑚𝑜

𝜕𝜽 𝐽

∞∑︁
𝑘=0

[
I − 𝜕2L𝑠𝑜

𝜕𝜽 𝐽 𝜕𝜽 𝐽

]𝑘
𝜕2L𝑠𝑜
𝜕𝜽𝑀 𝜕𝜽 𝐽

. (15)

The approximation of the hypergradient ∇𝜽𝑀 L̃𝑚𝑜 can be derived by
considering only the first 𝐾 terms of the Neumann series, thereby
avoiding the need to calculate the inverse of the Hessian as:

∇𝜽𝑀 L̃NMN𝑚𝑜 =
𝜕L𝑚𝑜

𝜕𝜽𝑀
− 𝜕L𝑚𝑜

𝜕𝜽 𝐽

𝐾∑︁
𝑘=0

[
I − 𝜕2L𝑠𝑜

𝜕𝜽 𝐽 𝜕𝜽 𝐽

]𝑘
𝜕2L𝑠𝑜
𝜕𝜽𝑀 𝜕𝜽 𝐽

. (16)

3.2.3 BiSMO-CG: Instead of calculating the Neumann series, an-
other efficient way to approximate the inverse Hessian is to solve

the linear systems. Specifically, 𝜕L𝑚𝑜
𝜕𝜽 𝐽

[
𝜕2L𝑠𝑜
𝜕𝜽 𝐽 𝜕𝜽 𝐽

]−1
can be computed

as the solution to the linear system
[
𝜕2L𝑠𝑜
𝜕𝜽 𝐽 𝜕𝜽 𝐽

]
𝒘 =

𝜕L𝑚𝑜
𝜕𝜽 𝐽

. The vector
𝒘 can be obtained by solving the optimization problem:

min
𝒘

𝒘⊤
[
𝜕2L𝑠𝑜
𝜕𝜽 𝐽 𝜕𝜽 𝐽

]
𝒘 −𝒘⊤ 𝜕L𝑚𝑜

𝜕𝜽 𝐽
. (17)

The conjugate gradient (CG) algorithm is well-suited for this task,
given its efficient iteration complexity and use of Hessian-vector
products (HVP) for

[
𝜕2L𝑠𝑜
𝜕𝜽 𝐽 𝜕𝜽 𝐽

]
𝒘 . Such HVP can be obtained cheaply



Algorithm 2 Bilevel SMO via BiSMO-NMN, BiSMO-CG

Input: Unroll step𝑇 , stepsizes 𝜉 𝐽 , 𝜉𝑀 , initializations 𝜽 0
𝐽
, 𝜽 0
𝑀
,𝒘0, term 𝐾

Output: 𝜽 𝐽 , 𝜽𝑀
1: while not converged do
2: for Inner step 𝑡 = 1, . . . ,𝑇 do ▷ Unroll𝑇 steps of inner-SO.
3: Update 𝜽𝑡

𝐽
← 𝜽𝑡−1

𝐽
− 𝜉 𝐽 ∇𝜽 𝐽 L𝑠𝑜 (𝜽

𝑡−1
𝐽
, 𝜽𝑀 ) ; // Or Adam.

4: Approximate 𝜽 ∗
𝐽
← 𝜽𝑡

𝐽
; Re-initialize 𝜽 0

𝐽
← 𝜽𝑡

𝐽
;

5: if BiSMO-NMN then ▷ Hypergradient via BiSMO-NMN.

6: 1) Get𝐾 Neumann series via HVP: 𝜕L𝑚𝑜
𝜕𝜽 𝐽

∑𝐾
𝑘=0

[
I − 𝜕2L𝑠𝑜

𝜕𝜽 𝐽 𝜕𝜽 𝐽

]𝑘
;

7: 2) Get Jacobian-vector product JVP in Equation (16);
8: 3) ∇𝜽𝑀 L̃NMN

𝑚𝑜 ← Equation (16);
9: if BiSMO-CG then ▷ Hypergradient via BiSMO-CG.

10: 1) Solve 𝒘𝐾 from
[
𝜕2L𝑠𝑜
𝜕𝜽 𝐽 𝜕𝜽 𝐽

]
𝒘 =

𝜕L𝑚𝑜
𝜕𝜽 𝐽

, via𝐾 steps of CG start-
ing from 𝒘0; then re-initialize 𝒘0 ← 𝒘𝐾 ;

11: 2) Get Jacobian-vector product JVP:
[
𝜕2L𝑠𝑜
𝜕𝜽𝑀 𝜕𝜽 𝐽

]
𝒘;

12: 3) ∇𝜽𝑀 L̃CG
𝑚𝑜 ← Equation (18);

13: Update 𝜽𝑀 ← 𝜽𝑀 − 𝜉𝑀∇𝜽𝑀 L̃𝑚𝑜 ; // Or Adam.

Table 2: Details of the Dataset.
Dataset From Area† Test num. Layer CD‡ tile

ICCAD13 [2, 5] 202655 10 Metal 32𝑛𝑚 4𝜇𝑚2

ICCAD-L [7, 10] 475571 10 Metal 32𝑛𝑚 4𝜇𝑚2

ISPD19 [18] 698743 100 Metal+Via 28𝑛𝑚 4𝜇𝑚2

Area†: average area: unit 𝑛𝑚2; CD‡: critical dimension.

without explicitly forming or storing the Hessian. The hypergradient
in Equation (14) for BiSMO-CG is then computed as:

∇𝜽𝑀 L̃CG𝑚𝑜 =
𝜕L𝑚𝑜
𝜕𝜽𝑀

−
[
argmin

𝒘

(
𝒘⊤ 𝜕2L𝑠𝑜

𝜕𝜽 𝐽 𝜕𝜽 𝐽
𝒘−𝒘⊤ 𝜕L𝑚𝑜

𝜕𝜽 𝐽

)]
𝜕2L𝑠𝑜
𝜕𝜽𝑀 𝜕𝜽 𝐽

. (18)

3.2.4 BiSMO-FD vs. BiSMO-NMN vs. BiSMO-CG vs. AM-SMO:
The optimization flow of BiSMO is demonstrated in Figure 2(b) and
Algorithm 2. When 𝐾 = 0, the ∇𝜽𝑀 L̃NMN𝑚𝑜 in Equation (16) reduces to
match ∇𝜽𝑀LFD𝑚𝑜 in Equation (13). In Algorithm 2, set 𝐾 = 0;𝑇 = 1;
the FD can be executed through the same process as NMN. Both NMN
and CG use𝑇 unroll SO steps to approximate 𝜽 ∗

𝐽
(line 2), and employ

HVP or Jacobian-vector product (JVP) for computational acceler-
ation. The key difference between them lies in approximating the
inverse Hessian: NMN uses the first 𝐾 terms of the Neumann series
(line 6), while CG applies𝐾 CG steps (line 10). Compared to AM-SMO,
the unroll strategy in line 2, due to the small T, substantially reduces
runtime by avoiding full SO cycle convergence. Furthermore, in
line 8 and line 12, IFT-based gradient fusion provides BiSMO with a
global perspective and a more thorough exploration of the solution
space, thereby facilitating enhanced and accelerated convergence.

4 Experiments
The BiSMO is implemented in PyTorch framework and tested

on an Nvidia RTX4090 GPU card across three datasets as listed in
Table 2. The hyperparameters settings are as follows 𝛾 = 1000;𝜂 =
3000; 𝜆 = 193𝑛𝑚;𝑁𝐴= 1.35;𝜎𝑜 = 0.95;𝜎𝑖 = 0.63.𝑄 = 24;𝑁 𝑗 = 35;𝑁𝑚 =

2048, 𝛼𝑚 =9;𝑚0=1;𝛼 𝑗 =2; 𝑗0=5; 𝛽 =30; 𝑃 =256; 𝜉 =𝜉𝑀 =𝜉 𝐽 =0.1;𝐾 =

5;𝑇 =3. All the tiles are converted to 2048 × 2048-pixel images.

4.1 Results Comparison with SOTA
We have conducted a comparative analysis of the performance

between our Abbe-based MO and the previous SOTA MO methods

DAC23-MILT [10] and NILT [7] in Table 3 and Table 4. Furthermore,
we compare the performance of BiSMO with the previous SOTA
AM-SMO [12, 13].AM-SMO is implemented in twoways: one involves
hybrid Abbe-SO and Hopkins-MO [13], while the other employs the
Abbe model for both SO and MO [12]. To highlight advantages
of BiSMO, Figure 3 shows log-scaled loss log(L𝑠𝑚𝑜 ) convergence
compared to SOTA MO [10] and AM-SMO [12] using random cases
from test datasets in Table 2, with a 0.01 learning rate. Result samples
are depicted in Figure 4, appropriately scaled and cropped to enhance
visualization.
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Figure 3: Loss comparison between different MO methods
(dashed lines) and SMO methods (solid lines).

Effectiveness of Abbe-MO: Table 3 and Table 4 demonstrate that
our Abbe-MO achieved a 25% reduction in L2, 19% in PVB, and 24%
in EPE when compared to the SOTA MO DAC23-MILT [10]. Further-
more, within the AM-SMO, the Abbe-based SMO[12] surpassed the
Abbe-Hopkins hybrid SMO[13] by decreasing L2 by 28%, PVB by
21%, and EPE by 29%. In Figure 3, all cases indicate that Abbe-MO
converges more rapidly and effectively than SOTAMO [10]. This can
be attributed to the fact that truncated decomposition in Hopkins’
approach leads to a loss of accuracy in lithography, thereby allowing
our lossless Abbe method to achieve superior MO and SMO results.

BiSMO vs. AM-SMO vs. MO: Table 3, Table 4 and Figure 3 reveal
that BiSMO variants significantly outperform AM-SMO[12, 13] in
error reduction, with BiSMO-NMN achieving decreases of 41% in L2,
46% in PVB, and 37% in EPE, and even the basic BiSMO-FD showing
reductions of 36% in L2, 34% in PVB, and 27% in EPE. Figure 3 illus-
trates AM-SMO’s [12] ‘zigzag’ loss curve, a result of its alternating
optimization, which ultimately settles below Abbe-MO yet above
BiSMO variants. This suggests that while AM-SMO’s broader solu-
tion space improves outcomes compared to pure MO. However, its
alternating approach risks entrapment in local minima, hindering it
from reaching the optimal results achievable by BiSMO. This fact
underscores the superior performance of the BiSMO method. Addi-
tionally, BiSMO demonstrates a significant improvement over the
SOTA MO [10], achieving a ∼50% reduction in all error metrics.

Runtime comparison: In our implementation, Abbe-MO and
Hopkins-MO have been accelerated to average 0.16s and 0.12s per
MO iteration, aligning with theoretical derivations in Section 3.1. As



Table 3: Result comparison with SOTA.

Bench
MO AM-SMO BiSMO (Ours)

NILT [7] DAC23-MILT [10] Abbe-MO(Ours) Abbe-Hopkins★ [13] Abbe-Abbe [12] BiSMO-FD BiSMO-CG BiSMO-NMN
L2 PVB L2 PVB L2 PVB L2 PVB L2 PVB L2 PVB L2 PVB L2 PVB

ICCAD13 37515 50964 28362 40044 20419 29697 27299 37278 17539 23944 13828 17872 13603 16274 13059 15839
ICCAD-L 71570 108162 53143 87010 44478 66092 48879 77062 40455 58560 29779 42643 29762 40543 28946 38706
ISPD19 97891 119732 85234 105592 61374 93132 79634 97073 55588 84402 39959 64211 39488 61190 38737 59832
Average 68992 92953 55580 77549 42090 62974 51937 70471 37861 55635 27855 41576 27618 39336 26914 38126
Ratio 2.56 2.44 2.07 2.03 1.56 1.65 1.93 1.85 1.41 1.46 1.03 1.09 1.03 1.03 1.00 1.00
Abbe-Hopkins★ [13]: AM-SMO employs Abbe model for SO and Hopkins model for MO. L2 and PVB unit: 𝑛𝑚2.

Table 4: EPE and runtime comparison.
MO AM-SMO BiSMO

NILT
[7]

DAC23
[10]

Abbe
-MO

A∼H★

[13]
A∼A†
[12] FD CG NMN

EPE avg. 10.1 3.6 2.8 3.3 2.4 1.8 1.6 1.6
Ratio 6.2 2.2 1.7 2.0 1.5 1.1 1.0 1.0

TAT‡ avg. 12.4 3.8 11.7 287 122.5 12.6 15.3 14.7
Ratio 0.84 0.26 0.80 19.52 8.33 0.86 1.04 1.00

A∼H★: Abbe-Hopkins; A∼A†: Abbe-Abbe; TAT‡: Turn around time (s).

ICCAD13/ L ISPD19Source
M

ask
Resist

Figure 4: Result samples from ICCAD13 and ISPD19 datasets.

shown in Table 4, for parity, we have applied GPU acceleration to
AM-SMO [12, 13] with settings identical to BiSMO. In their original
implementations, the runtime for [12] was 910s, and [13] was 69
minutes. Utilizing our accelerated Abbe imaging, this has been accel-
erated to 122.5s and 287s, respectively. Despite these improvements,
BiSMO, leveraging hypergradient, still achieves faster convergence
than [12, 13], boosting throughput by 8.3 times compared to the
Abbe-based AM-SMO [12]. Furthermore, it’s about 19.5 times quicker
than the Abbe-Hopkins hybrid AM-SMO [13], which is slowed down
by its complex iterative TCC generation and decomposition.

4.2 Ablation Study

BiSMO-FD vs. BiSMO-NMN vs. BiSMO-CG: Figure 3, Table 3,
and Table 4 clearly show that NMN typically outperforms other meth-
ods, followed by CG, with FD being relatively weaker among all
BiSMO variants. The relative instability of CG is indicated by its
largest standard deviation (STD) in Figure 5. Meanwhile, FD boasts
the shortest runtime (Table 4), and CG’s advantage lies in outper-
forming NMN in some cases, as shown in Figure 3(d).
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Figure 5: Mean and STD of (a) ICCAD (b) ICCAD-L datasets.

5 Conclusion
In this paper, we first establish a unified SMO framework utilizing

Abbe-imaging, enabling simultaneous SO and MO gradient compu-
tation with enhanced lithographic precision and rapid calculation.
Building on this foundation, BiSMO is introduced, conceptualizing
SMO as a bilevel problem and proposing three innovative methods
for calculating source-mask best-response gradients, effectively ad-
dressing bilevel SMO challenges. BiSMO’s gradient-based approach,
with its global perspective and improved exploration of solution
space facilitates navigation out of local minima, ensuring better and
faster converging SMO outcomes. This method surpasses traditional
AM-SMO limitations, positioning bilevel SMO as a future promising
mainstream approach in the field.

References
[1] C. H. Wallace, P. A. Nyhus, and S. S. Sivakumar, “Sub-resolution assist features,”

Dec. 15 2009, US Patent.
[2] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimizing solution with

process window aware inverse correction,” in Proc. DAC, 2014.
[3] P. Evanschitzky, A. Erdmann, and T. Fuehner, “Extended abbe approach for fast and

accurate lithography imaging simulations,” in 25th European Mask and Lithography
Conference, 2009.

[4] N. Cobb, “Sum of coherent system decomposition by SVD,” Berkeley CA, 1995.
[5] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask optimization with

lithography-guided generative adversarial nets,” in Proc. DAC, 2018.
[6] G. Chen,W. Chen, Y.Ma, H. Yang, and B. Yu, “DAMO:Deep agilemask optimization

for full chip scale,” in Proc. ICCAD, 2020.
[7] B. Jiang, L. Liu, Y. Ma, H. Zhang, E. F. Y. Young, and B. Yu, “Neural-ILT: Migrating

ILT to nerual networks for mask printability and complexity co-optimizaton”,” in
Proc. ICCAD, 2020.

[8] G. Chen, Z. Yu, H. Liu, Y. Ma, and B. Yu, “DevelSet: Deep neural level set for instant
mask optimization,” in Proc. ICCAD, 2021.

[9] Z. Yu, G. Chen, Y. Ma, and B. Yu, “A gpu-enabled level set method for mask
optimization,” in Proc. DATE, 2021.

[10] S. Sun, F. Yang, B. Yu, L. Shang, and X. Zeng, “Efficient ILT via multi-level lithog-
raphy simulation,” in Proc. DAC, 2023.

[11] Z. Wang, X. Ma, R. Chen, S. Zhang, and G. R. Arce, “Fast pixelated lithographic
source and mask joint optimization based on compressive sensing,” IEEE TAI, vol. 6,
pp. 981–992, 2020.

[12] Y. Sun, Y. Li, G. Liao, M. Yuan, P. Wei, Y. Li, L. Zou, and L. Liu, “Sampling-based
imaging model for fast source and mask optimization in immersion lithography,”
Appl. Opt., 2022.

[13] M. Ding, Z. Niu, F. Zhang, L. Zhu, W. Shi, A. Zeng, and H. Huang, “Gradient-based
source mask and polarization optimization with the hybrid hopkins–abbe model,”
JM3, 2020.

[14] J. Lorraine, P. Vicol, and D. Duvenaud, “Optimizing millions of hyperparameters
by implicit differentiation,” in Proc. AISTATS, 2020.

[15] M. Zhang, S. W. Su, S. Pan, X. Chang, E. M. Abbasnejad, and R. Haffari, “iDARTS:
Differentiable architecture search with stochastic implicit gradients,” in Proc. ICML,
2021.

[16] S. K. Choe, S. V. Mehta, H. Ahn, W. Neiswanger, P. Xie, E. Strubell, and E. Xing,
“Making scalable meta learning practical,” in Proc. NeurIPS, 2023.

[17] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest in mask optimization
and benchmark suite,” in Proc. ICCAD, 2013.

[18] W.-H. Liu, S. Mantik, W.-K. Chow, Y. Ding, A. Farshidi, and G. Posser, “ISPD 2019
initial detailed routing contest and benchmark with advanced routing rules,” in
Proc. ISPD, 2019.


