Do Not Go Gentle Into That Good Night.
--『 Interstellar 』, Dylan Thomas.

Greetings! I’m currently a visiting student at UT Austin, under the guidance of Professor David Z. Pan. I’m thrilled to have this opportunity to collaborate and expand my research horizons at UTDA.

I am also a Ph.D. candidate at The Chinese University of Hong Kong (CUHK-CSE), where I have been fortunate to work with Professor Bei Yu and co-supervised by Professor Martin D. F. Wong. My primary research area revolves around computational lithography and mask optimization, focusing on developing algorithms to enhance the manufacturing process of integrated circuits. I’m also deeply interested in exploring the potential of deep learning in VLSI design and utilizing physics-informed networks to tackle EDA area problems. I’m enthusiastic about collaborating with experts in the field and contributing to innovative projects. Please feel free to contact me if you have any suggestions or potential collaborations in mind.

I’m also maintaining a curated list of AI for EDA papers. Check it out here: Awesome AI for EDA. The list is under construction and you are welcomed to submit your publications follow the instructions.


Publications

Representative publications that I am a primary author on are highlighted.
[Google Scholar; 75+ citations, h-index: 4+] [Download bibtex for all publications]

Conference papers

[C11] AlphaSyn: Logic Synthesis Optimization with Efficient Monte Carlo Tree Search [bibtex]
Zehua Pei, Fangzhou Liu, Zhuolun He, Guojin Chen, Haisheng Zheng, Keren Zhu, and Bei Yu
ICCAD 2023
[C10] Physics-Informed Optical Kernel Regression Using Complex-valued Neural Fields [bibtex]
Guojin Chen, Zehua Pei, Haoyu Yang, Yuzhe Ma, Bei Yu, and Martin Wong
DAC 2023
[C9] DiffPattern: Layout Pattern Generation via Discrete Diffusion [bibtex]
Zixiao Wang, Yunheng Shen, Wenqian Zhao, Yang Bai, Guojin Chen, Farzan Farnia, and Bei Yu
DAC 2023
[C8] GPU-accelerated Matrix Cover Algorithm for Multiple Patterning Layout Decomposition [bibtex]
Guojin Chen, Haoyu Yang, and Bei Yu
SPIE 2023
[C7] Efficient Point Cloud Analysis Using Hilbert Curve. [bibtex]
Wanli Chen, Xinge Zhu, Guojin Chen, and Bei Yu
ECCV 2022
[C6] AdaOPC: A Self-Adaptive Mask Optimization Framework For Real Design Patterns [bibtex]
Wenqian Zhao, Xufeng Yao, Ziyang Yu, Guojin Chen, Yuzhe Ma, Bei Yu, and Martin Wong
ICCAD 2022
[C5] LayouTransformer: Generating Layout Patterns with Transformer via Sequential Pattern Modeling [bibtex]
Liangjian Wen, Yi Zhu, Lei Ye, Guojin Chen, Bei Yu, Jianzhuang Liu, and Chunjing Xu
ICCAD 2022
[C4] DevelSet: Deep Neural Level Set for Instant Mask optimization [bibtex] [abs]
Guojin Chen, Ziyang Yu, Hongduo Liu, Yuzhe Ma, and Bei Yu
ICCAD 2021
[C3] Learning Point Clouds in EDA. [bibtex] [abs]
Wei Li, Guojin Chen, Haoyu Yang, Ran Chen, and Bei Yu
ISPD 2021
[C2] DAMO: Deep Agile Mask Optimization for Full Chip Scale [bibtex] [abs]
Guojin Chen, Wanli Chen, Yuzhe Ma, Haoyu Yang, and Bei Yu
ICCAD 2020
[C1] A GPU-enabled Level Set Method for Mask Optimization [bibtex] [abs]
Ziyang Yu, Guojin Chen, Yuzhe Ma, and Bei Yu
DATE 2020

Journal papers

[J4] L2O-ILT: Learning to Optimize Inverse Lithography Techniques [bibtex]
Binwu Zhu, Su Zheng, Ziyang Yu, Guojin Chen, Yuzhe Ma, Fan Yang, Bei Yu, and Martin Wong
TCAD 2023
[J3] A GPU-Enabled Level-Set Method for Mask Optimization [bibtex]
Ziyang Yu, Guojin Chen, Yuzhe Ma, and Bei Yu
TCAD 2023
[J2] DevelSet: Deep Neural Level Set for Instant Mask optimization [bibtex]
Guojin Chen, Ziyang Yu, Hongduo Liu, Yuzhe Ma, and Bei Yu
TCAD 2023
[J1] DAMO: Deep Agile Mask Optimization for Full-Chip Scale [bibtex]
Guojin Chen, Wanli Chen, Qi Sun, Yuzhe Ma, Haoyu Yang, and Bei Yu
TCAD 2022

Professional Activities

Paper Review / External Review

2021-2023 Design Automation Conference (DAC)
2022-2023 AAAI Conference on Artificial Intelligence (AAAI)
2022-2023 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)

Teaching

Python Computing (AIST 1110), TA F2022
Mobile Computing (CSCI 3310), TA S2022
Numerical Optimization (AIST 3010), TA F2021

Last updated on 2023-09-15 , thanks to Bamos for the blog template.